Long term health effects of diving

Jan Risberg

Possible Long Term Health Effects (LTH)

- Without recognized injury/accident
 - Aseptic/dysbaric osteonecrosis
 - Reduce pulmonary function
 - Neurological injuries

LTH

- Recognized LTH of trauma:
 - Noise induced hearing loss
 - Vertigo, tinnitus (inner ear barotrauma and DCS)
 - Neurological sequelae (DCS, CAGE)
 - Musculoskeletal problems

Does diving affect health?

Admission of 11,584 enlisted USN divers compared to non-diving controls

<table>
<thead>
<tr>
<th></th>
<th>17-22</th>
<th>23-28</th>
<th>29-34</th>
<th>35-40</th>
<th>>41</th>
</tr>
</thead>
<tbody>
<tr>
<td>Joint illnesses</td>
<td>↑</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stress-related illness (alcohol/drugs/ulcus)</td>
<td>↓</td>
<td>↓</td>
<td>↓</td>
<td>↓</td>
<td></td>
</tr>
<tr>
<td>Airway illness</td>
<td>↑</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Septum deviation</td>
<td>↑</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neurol.illnesses</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cardiac disease</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Environmental illnesses</td>
<td>↑</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Morbidity

- Hoiberg & Blood 1986:
 - 1977 USN diving-officers vs 1973 non-diving officers (ctrl group)
 - Hospitalisation rate
 - ↑ Neurological illnesses and joint problems
 - ↓ Airway disease
 - >20 dives/year:
 - ↑ Total hospitalisation rate
 - ↓ Alcohol/drug/substance abuse
 - ↓ Cardiac and circulatory organ disease
 - ~ Neurological illnesses
Dysbaric osteonecrosis (DON)

- First described 1911 (16 years following discovery of X-ray)
- Aseptic necrosis of metaphyses of long bones
 - Distal femur
 - Proximal humerus
 - Proximal tibia
- Classification: FICAT 0-4
- Usually asymptomatic

DON (contd)

- Etiology:
 - Free gas: DCS, VGE ("Silent bubbles")
 - Correlation between DON and years of diving, diving depth and previous DCS.
 - Fat emboli
 - Plate aggregation
 - Gas-osmosis: Increased intramedullary pressure
 - Oxygen (ROS)?
 - Still unresolved!

- Increased cancer risk?
 - Probably not!
- Prevalence:
 - 1981 UK: 4.2%
 - 1993 Norway: 1-2%?
 - Currently: Concern mainly in developing countries (Turkish sponge diver – prevalence 70%)
- Consequence
 - None unless symptoms

Military diving and DON

- Available reports
 - Bolte et al 2005
 - 32 mil divers vs 28 ktrl
 - Skeletal MRI
 - 1 DON in each group (NS)
 - Yildiz et al 2004
 - 25 instructors in SET
 - Skeletal x-ray and MRI
 - No DON
 - Uzun et al 2008
 - 106 mil divers
 - MRI
 - No DON

Humerus DON

DON (contd)

- Increased cancer risk?
 - Probably not!
- Prevalence:
 - 1981 UK: 4.2%
 - 1993 Norway: 1-2%?
 - Currently: Concern mainly in developing countries (Turkish sponge diver – prevalence 70%)
- Consequence
 - None unless symptoms

Reading more?
Changes in pulmonary function

- After deep dives (Cotes, Reed, Thorsen):
 - Reduced diffusion capacity (temporary) (TLCO)
 - Pos. correlated to hyperoxia
 - Pos. correlated to VGE
 - Increased TLC (temporary – 4-6w)
 - Reduced mid-expiratory flowrates (FEF25-75%)
 - Permanent
 - Reduced work capacity (VO2Max)
 - Temporary

Pulmonary function

- Cross-sectional studies (Cotes, Reed, Suzuki, Thorsen, ++):
 - FVC ↑, FEV1 ↓↑
 - FEF25,75%, FEF75%, TLCO ↓
 - Suggest dysfunction of small airways
 - Loss of elastic tissue
 - FEV1, TLCO and mid-expiratory flowrates negatively correlated to length of diving career

Lung function

- Longitudinal studies (Reed, Thorsen, Skogstad, Fitzpatrick, Tetzlaff, LeMaitra):
 - MEF25, MEF50, FEF25-75% ↓
 - Variable results with respect to FVC and FEV1
 - Older studies: Slight reduction compared to controls
 - Newer studies show no effect
 - Mid- and end-expiratory flowrates negatively correlated to diving career

Mechanisms

- Immersion
- Hyperoxia
- Depth (gas density?)
- VGE

Effects of diving on lung function

- 3-6-12 y follow-up of 83-77-37 inshore occupational divers (Skogstad et al, Aviat Space Environ Med 2008;79:883-7)
 - Prospective controlled study
 - Ctrl group: Firefighters
 - ~40 dives/y (median)
 - Static and dynamic spirometry + TLCO
 - FVC, FEV1, TLCO NS
 - Small but statistic. signif. change in FEF25-75 (exposure dependent)
 - 10-25 y follow-up of NZ occupational divers
 - No additional effect of diving on FVC, FEV1 or FEV1/FVC. Small additional reduction in PEF, not clinically significant (N=232), (Sames 2018)

Military diving and lung function

- GER Combat swimmers (CC oxygen breathing)
 - Tetzlaff et al 2005
 - 39 divers followed up for 5y
 - Spirometry
 - No significant difference compared to control group
- "Regular" divers and submarine personnel
 - Tetzlaff et al 2006
 - 469 mil divers, 123 submariners (ctrl group)
 - ≈3 spirometry measurements
 - No signific. difference between divers and ctrl group
 - Smoking accelerates FEV1 reduction
 - Most prominent in divers with initial high FEV1
Neurological LTH effects of diving

- 156 occupational divers
 - 40 deep divers
 - 23 air divers
 - 9.7 y of diving (1-29)
 - 51% had experienced DCS
- Medical history, clinical examination (EEG, MR, EP)

Todnem et al 1991

Results

- Air divers and sat. Divers had more neurological symptoms and findings than the control group.
- Total dive exposure, neurological DCS and age were risk factors
- Suggests a possible relationship between occupational diving and neurological LTH

Todnem et al 1991

Neuropsychological examinations

- 421 USN divers
- 20-50 y (Median 30)
- Extensive neuropsychological examinations at varying intervals of diving carrier.

Curley 1994

Neuropsychological tests

<table>
<thead>
<tr>
<th>Neuropsychological tests</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trails B</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SDMT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TTMA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wechsler</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Word Fluency</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grip Strength</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
</tr>
</tbody>
</table>

A: Two tests, no intermittent test B: Two tests, incl intermittent test C: >7y between test/retest D: Deep dives

Curley et al. 1994

Conclusion

- In general no tendency suggesting impaired neuropsychological function in divers
- Good test/retest groups
- Large sample
- Sensitive statistical methods (paired tests)
Neuropsychological studies

• Cordes et al 2000
 – Neurological, neuropsychological and MRI examinations of military divers vs controls
 – No difference between the groups
 • A few neuropsychological test in which divers performed inferior

Norwegian off-shore divers

• 115 of 350 Norwegian off-shore divers were referred for extensive examinations at Haukeland University Hospital up to April 1st 2003.
 – Selected sample (expected inferior health)
 – 81 examined per July 2003
 • Age=52 years (35-66), 12 years since finished diving
 • 46 receiving disability benefits
 • 74 tx for DCS, 33 LOC
 • ~30% of the sample presented neural, Symptoms and/or findings (encefalopathy)
 • >4.5% of the population with COPD (spirometry)
 • 3.30% of the sample showed clinically significant reduced performance on neuropsychological tests (memory, speed, coordination, attention)

Neuropsychological tests

Summary

• Many case report and smaller observational studies have reported impaired neuropsychological performance after DCS
• No report has to yet documented with confidence neurophysiological impairment secondary to uncomplicated diving

British LTH study

• Questionnaire (Ross et al 2007)
 – 1540 divers vs 1035 off-shore workers <1991
 – Equal self-perceived health, SF 12, but
 • Divers reported more memory problems and musculoskeletal complaints
 – No difference in work status (employed/unemployed/social compensation)
 – Cultural difference/expectation difference between Norwegian and British divers?

Loss of ependyma
CNS histological changes

- "Non staining space occupying lesions"
 - Lacunae
- Hyalinisation of small vessels
- Loss of ependyma

Hyperintense white lesions

MRI findings

- Many and conflicting studies
- Majority of studies suggests
 - Increased incidence of cervical disk degeneration (Koch 1997)
 - Refuted by others (Bartch 2001)
- PFO and MRI
 - PFO is associated with ischemic lesions on MRI (Schwerzmann 2001, Koch 2008)
 - Refuted by others (Balestra 2016)
 - Closing of PFO reduce recruitment of ischemic lesions (Johannes 2012)

Reduced hearing

- Reported in prospective and cross-sectional studies (Molvar et al., Australia, 2011; Molvar, Australia, 2016; Schwerzmann et al., 2011; Goplen, 2011; Pelaia, 2009)
 - Reduced hearing in divers compared to control groups.
 - No difference to comparable groups of noise exposed workers (firefighters, workshop employed)
 - Minimal effects of dive exposure on hearing threshold (4 and 8 kHz)
 - "Conventional" noise-induced hearing loss? NB!
 - Hard hat diving helmet
 - Power tools
 - Surface decompression with oxygen

Effects on eye

- Fundus:
 - Fluorescein angiography
 - Polkinghorne 1988:
 - Statistically significant loss of pigment and microvascular changes in divers compared to control group
 - Normal vision
 - No difference between divers and control group
Cardiovascular disease

- Human studies:
 - Increased cardiac mass in occupational divers compared to recreational divers
 - Right ventricular hypertrophy in recreational divers compared to control
 - SMR 1.37-1.51 (cardiac and circulatory vessel disease incl ischemic heart disease in Swedish occupational divers hjert/karsykdom og iskemisk hjertesykdom) compared to expected 0.77-0.74 (Rosberg og Løving 1991)

Cardiac function – military divers

- Echocardiography (Boussouges et al 2007)
 - 22 (french) ml. Combat divers vs 22 fritidsdykkere
 - Doppler ultrasound
 - Increased left ventricular mass (209 vs 172 g, p<0,03)
 - Effect of physical conditionning?

Diver’s hand

Skin

- Diver’s hands (Ahlen et al 1995):
 - Examination of skin in Norwegian saturation divers
 - Loss of skin
 - Palm and sole
 - Usually after completed decompression, but may present in storage
 - Erythema/itching → flaking → Regeneration
 - Histology/immunohistology: Negative

Skin (contd)

- Diver’s hand (contd):
 - Etiology: Unknown
 - Substance in sea water (hotwater suit)?
 - Prophylaxis: Unknown
 - Treatment: None
 - Risk for later development of toxic hand excema/allergy: Possible

Keratolysis exfoliativa

THANKS FOR YOUR ATTENTION... YOU MAY NOW CLAP... IF YOU HAVE ANY FURTHER QUESTIONS, MY FRIEND GOOGLE WILL ANSWER THEM